Extrapolation Expansions for Hanging-Chad-Type Galerkin Integrals with Plane Triangular Elements∗

نویسنده

  • J. N Lyness
چکیده

Applications of three-dimensional Galerkin boundary element methods require the numerical evaluation of many four-dimensional integrals. In this paper we explore the possibility of using extrapolation quadrature. To do so, one needs appropriate error functional expansions. The treatment here is limited to integration over a region T1×T2, where T1 and T2 are planar triangular elements in a hanging-chad configuration; that is, they have one vertex in common but are otherwise disjoint. We derive error expansions for product trapezoidal rules valid for integrands having an |r12|−1 factor. This factor gives rise to a weak singularity at the common vertex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method

In this article, classical plate theory (CPT) is reformulated using the nonlocal differential constitutive relations of Eringen to develop an equivalent continuum model for orthotropic triangular nanoplates. The equations of motion are derived and the Galerkin’s approach in conjunction with the area coordinates is used as a basis for the solution. Nonlocal theories are employed to bring out the...

متن کامل

A High Order Fourier /

In this paper we formulate a high order algorithm for hyperbolic conservation laws using a combination of Fourier expansions and unstructured spectral/hp elements. The unstructured part of the algorithm is formulated using a discontinuous Galerkin approximation. The conservation properties of the unstructured algorithm using a variable polynomial order are examined and an orthogonal projection ...

متن کامل

Nonlocal Effect on Buckling of Triangular Nano-composite Plates

In the present study, small scale effect on critical buckling loads of triangular nano- composite plates under uniform in-plane compression is studied. Since at nano-scale the structure of the plate is discrete, the size dependent nonlocal elasticity theory is employed to develop an equivalent continuum plate model for this nanostructure incorporating the changes in its mechanical behavior. The...

متن کامل

Hybrid Galerkin boundary elements: theory and implementation

In this paper we present a new quadrature method for computing Galerkin stiiness matrices arising from the discretisation of 3D boundary integral equations using continuous piecewise linear boundary elements. This rule takes as points some subset of the nodes of the mesh and can be used for computing non-singular Galerkin integrals corresponding to pairs of basis functions with non-intersecting...

متن کامل

Direct Evaluation of Hypersingular

A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. By integrating two of the four dimensions analytically, the coincident integration, deened as a limit to the boundary, is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with corresponding singularities in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005